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Summary 

Current and proposed regulations require that some form of Student’s t-test be used 
for evaluation of groundwater pollution detection parameters. Several problems arising 
from that requirement lead to an inflated false alarm rate. Among these are the use of 
variability among replicates as the estimate of random sampling error, and the failure to 
take proper account of spatial and temporal sources of variation. In addition, conditions 
essential for the valid application of the t-test are usually lacking. The requirement that 
a separate t-test be conducted for each detection parameter, each reporting period, causes 
an additional severe increase in the likelihood of a false alarm. A dummy variable analysis 
of covariance is suggested as a desirable alternative. After statistically removing temporal 
variation from the data the averages of the upgradient and downgradient wells are com- 
pared. Examples of the use of this form of analysis are given. 

Introduction 

One purpose of a groundwater monitoring program is to protect the en- 
vironment by measuring concentrations or detecting changes in significant 
indicators of contamination. To achieve this purpose in a valid, efficient, and 
effective manner a program must be designed so as to insure that environ- 
mental impacts will not go undetected while, at the same time, minimizing 
the likelihood of false detections. Because measurements of indicators vary 
from time to time, place to place, and include laboratory errors, it is widely 
held that detection programs must be statistically based. A minority opinion 
holds that a non-statistical (medical) model is more appropriate. Those who 
support such an approach point out that random sampling, a requirement for 
valid statistical analysis, seldom, if ever, obtains in field situations. They 
liken the assessment of the safety of a waste disposal site to the assessment 
of the health of a patient. The author is not unsympathetic to that point of 
view. The current regulatory climate, however, makes some form of statisti- 
cal analysis mandatory. Accordingly, the present paper addresses the prob- 
lems in statistical monitoring of hazardous waste disposal sites. 
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Several approaches to statistical analysis of data from groundwater moni- 
toring programs have been proposed or are in use. The author of the present 
report addresses some of these approaches and recommends use of more 
satisfactory statistical methods. 

Detection of contaminants in groundwater may be attempted by either 
of two processes: (1) Detection of a contaminant occurs whenever a concen- 
tration significantly different from zero is discovered in groundwater. Statis- 
tical consideration is restricted to determination of uncertainty in any ana- 
lytic measures, especially at very low concentrations. Statistical methods 
are used to decide whether an apparent detection represents the real pres- 
ence of the material in question, or random fluctuations (laboratory error) 
in the measurements. (2) Detection is attempted against a background in 
which significant non-zero values of parameters can be expected in ground- 
water, whether contaminated or not. Specific conductance, pH, and total 
organic carbon are typical of such parameters. The logic of detection of 
groundwater contamination is based upon the comparison of groundwater 
sampled at site known to be free of contamination from a given source (an 
up-gradient site) with groundwater sampled from a site potentially exposed 
to contamination (a down-gradient site). When, a “significant” difference 
exists between up-gradient and down-gradient groundwater samples one con- 
cludes that the source has contaminated the groundwater. Fundamental to 
this analysis is the concept that, absent any impact, the up-gradient and 
down-gradient samples would not differ. This essential assumption is seldom, 
if ever, tested and is questionable in view of the fact that the transit time 
through an aquifer from an up-gradient to a down-gradient site may range 
from months to millenia. 

Assumptions of random sampling and independence of observations are 
central to almost all statistical methods. Statistical procedures assume that, 
at some stage, there has been an element of randomness in the way the data 
have been selected. Randomness of analytical data from groundwater anal- 
yses may result from spatial or temporal factors. However, no provision for 
obtaining data through random sampling is included in any approved regula- 
tion or statute dealing with monitoring of groundwater. At the present time 
there is no agreement among statistical experts as to the best way to incor- 
porate necessary randomness in sampling procedures for groundwater moni- 
toring. 

Independence of observations means that knowledge of any one data 
point does not decrease one’s uncertainty about any other data point. This 
assumption, essential to many commonly used statistical tests, is violated in 
the extreme by methods of analysis required by regulations. One measure 
of independence is provided by the correlation coefficient, a number ranging 
between - 1.0 and +l.O. A correlation coefficient, r, of 0.0 indicates linear 
independence among observations. Analysis of numerous data sets using the 
indicator parameters (pH, specific conductance, total organic carbon (TOC), 
and total organic halogen (TOX)) show correlation coefficients of 0.99 and 
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higher among replicate measures. Nevertheless, these measures are, under 
current regulations, such as those specified in 40 CFR Part 264, treated as 
independent observations. The results may be described as statistical chaos. 

t-Tests 

Several forms of Student’s t-test have been employed in the analysis of 
data collected in groundwater monitoring programs. While forms of t-tests 
differ in detail, they share a number of similarities. (In the discussion that 
follows the Greek letter p denotes a population mean, and the symbol X rep- 
resents a sample mean.) t-Tests are statistical procedures for determining 
whether two sample means (Xs) differ by more than could be expected from 
mere sampling errors when, in fact, the population means (~.ts) are equal. 

When conducting statistical tests on differences between Xs one usually 
begins by assuming the null hypothesis, i.e., that the two ps estimated by 
the two Xs are equal. If the Xs differ by more than can be attributed to vari- 
ation in random samples, one concludes that the population means differ. 
There is, of course, a probability that the null hypothesis will be rejected 
even though the population means do not, in fact, differ. This error is known 
as an error of Type I and is usually signified by the Greek letter alpha (cx). 
One can, in principle, choose any desired value of 01. The practice in ground- 
water monitoring has been to use cx = 0.01. 

Another error results from failure to reject the null hypothesis when, in 
fact, it is false. The likelihood of such an error, a Type II error, is generally 
indicated by the Greek letter beta (0). For any given value of (Y the value of 
p will be a function of sample size, n, and the true difference between the 
ps. The greater the difference between the ps and the larger the sample sizes 
the smaller /I will be. The power of the statistical test is 1-p. Unlike the case 
with (Y, there does not appear to be a generally accepted value for 0, or for 
the difference between ~.ls. 

A t-test, when applicable, is a desirable statistical test. Not only is it wide- 
ly known, easy to calculate, and available in most statistical software pack- 
ages; it is also, when properly used, among the most powerful statistical tech- 
niques. Like many other statistical tests, t-tests are ratios between observed 
differences in Xs and estimates of sampling error. Several different methods 
of estimating sampling error are in current use in the field of groundwater 
monitoring. Some of these are discussed below. 

Present regulations (40 CFR 246) stipulate that groundwater monitoring 
data, obtained in a single quarter from four down-gradient wells, be com- 
pared with the average of data obtained over the period of a year from one 
or more up-gradient wells. For example, during a control year one or more 
up-gradient wells are sampled quarterly. A number of determinations, typical- 
ly four, are made on a sample from each well each quarter. The mean and 
standard deviation of the resulting data set are used to test whether the mean 
of each down-gradient well, measured during some later time period (quar- 
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ter), differs from the up-gradient mean. The mean and standard deviation of 
measurements from the down-gradient well are based upon multiple deter- 
minations (again, typically, four) of water sampled from the well in question 
during the quarter being evaluated. Some form of Student’s t-test is used to 
determine statistical “significance”. The most general form is shown below 

X,-X, 

t = [ (DF&2+DF*SzZ)( l/ra,+l/nz)]O.” 

where subscripts 1 and 2 represent up-gradient and down-gradient, respec- 
tively, S2 is the unbiased variance estimator (mean-square), n is the sample 
size, and DF is degrees of freedom (n-l). 

In this approach the numerator of the t-test is the difference of the up- 
gradient and down-gradient means. The denominator is based upon the vari- 
ability (standard deviation) of the up-gradient and down-gradient data. It is 
important to consider the meaning of that denominator. Clearly, the down- 
gradient variability contains nothing but laboratory error. All of the values 
upon which it is based were taken on a single occasion from a single well. 
Neither temporal (quarter-to-quarter) nor spatial (well-to-well) variation is 
present. 

In the up-gradient data set, however, both laboratory error and temporal 
variability are present. Usually, laboratory error is such a small proportion 
of the total variability that it may be ignored (data illustrating this phenom- 
enon are presented later in this discussion). A t-test based upon such data, 
therefore, compares the differences of the averages of wells in different loca- 
tions (numerator) with the amount of variation arising from temporal and 
laboratory sources. This comparison is misleading. Laboratory error can be 
made arbitrarily small by improving laboratory techniques. Thus, any ob- 
served difference between means could, at least theoretically, be made statis- 
tically “significant”. 

Sample means will differ across both time and space because of naturally 
occurring “background” (non-polution source related) factors. Such factors 
may include seasonal, temperature, microgeological, or other sources of vari- 
ability. Each of these factors may generate much larger variation than will 
laboratory errors. 

The t-test uses both laboratory error and temporal variation in the denom- 
inator. The temporal (seasonal) variation may be expected to be much larger 
than the laboratory component, typically by one or more orders of magni- 
tude. The t-test compares groundwater data from down-gradient well, mea- 
sured at one time, with the average of up-gradient wells measurements made 
at different times. In the numerator variation may be due to four factors: 
laboratory error, naturally occurring temporal variation, naturally occurring 
spatial variation, and contamination from a population source. The denomi- 
nator contains variation from laboratory error and seasons. When more than 
one up-gradient well is used the denominator also contains spatial variation. 
When a single up-gradient well’s data are tested against data from a single 
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down-gradient well the denominator is clearly inappropriate because only 
the numerator includes spatial variation. When the denominator contains 
spatial variation (more than one up-gradient well) a problem remains, but is 
less obvious. 

Temporal variation in many groundwater parameters, e.g., pH, specific 
conductance, is cyclic. Testing results from a given quarter against an annual 
average may result in testing the peak of a cycle against the mean value of 
that cyclic system. Such comparisons will often result in a significant t-test, 
demonstrating that quarters differ from each other by more than random 
sampling error. This kind of inappropriate t-test often leads to a large num- 
ber of “significant” results in the “wrong” direction, i.e., up-gradient wells 
showed more contamination than did the corresponding down-gradient 
wells. One such instance resulted in discovering 24 “significant” tests at the 
a! = 0.01 level among 40 t-tests. Of those 24, 14 were in the “wrong” direc- 
tion. More appropriate analysis showed no significant differences among the 
wells for any of the measured parameters. The apparent differences between 
up- and down-gradient wells were due, in part, from failure to consider sea- 
sonal differences and, in part, from lack of independence among the repli- 
cate samples. (So little information is gained from replicate samples in most 
instances that, for a constant budget, it would be better to spend the costs 
of replicates in some other way, such as installing more wells, or more fre- 
quent sampling. Little statistical justification exists for more than one repli- 
cate (two measures) for each parameter.) 

In another approach t-tests are used to compare each down-gradient well 
against the average of one or more up-gradient wells using only data from the 
time period (quarter) under investigation. Use of one up-gradient well is 
equivalent to the use of laboratory error as the sole basis of comparison. In 
such cases almost every comparison turns out to be “significant” because 
virtually all wells can be expected to differ by more than laboratory error. 
Data from multiple up-gradient wells, however, will reduce the number of 
false positives. The problem is not completely solved by increasing the num- 
ber of up-gradient wells because the variability of the down-gradient mea- 
sures still includes only laboratory error. Furthermore, such a procedure 
lacks statistical power because only a small part of the available data is being 
used in each comparison. Even when multiple up-gradient wells exist the 
t-test does not have as much statistical power as procedures which use all 
available data. 

If there are several down-gradient wells a number of t-tests must be per- 
formed, one for each down-gradient well. If the chosen value of Type I error 
(a) is 0.01 the probability that at least one test will be significant by chance 
is 1-(1-e)“, where it is the number of t-tests being conducted. For II = 6, 
that probability is 0.0585. When n = 10 the probability of at least one false 
positive rises to 0.0956, almost ten times greater than the acceptable value. 
The use of many t-tests requires that some additional precaution be taken 
to insure that the nominal OL and the achieved (Y be the same. A posterior-i 
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tests have been designed for this purpose, but their use is complex and often 
unsatisfactory. The problem can be avoided by using a single F-test instead 
of multiple t-tests. For this, and other reasons, analysis of covariance de- 
serves special consideration. 

Analysis of covariance 

Important considerations for a statistical test of analytical data include: 

(1) use of all of the available relevant data 
(2) removing the effects of temporal variation 
(3) taking proper account of spatial variation 
(4) maintaining the desired Type I error rate 
(5) maximizing statistical power 

The analysis of covariance provides all of these desirable characteristics. Fur- 
thermore, the procedure is well documented in widely distributed textbooks, 
and is available in many statistical analysis packages for computers, e.g., 
SAS, BMDP, SPSS, etc. The examples used below were computed using the 
SAS package [l]. 

The analysis of covariance is a procedure which combines features of anal- 
ysis of variance and regression analysis. The procedure first removes the ef- 
fects of a covariable (in the present case, time or “quarter”) from the values 
of the dependent variable and then performs an analysis of variance on the 
residuals. These residuals represent values that would have been obtained if 
all of the data had been obtained at the same time, i.e., if there had been no 
seasonal variation. 

The data in Table 1 for the variable specific conductance were gathered at 
a waste disposal site which had two up-gradient and three down-gradient 
wells. 

In Table 1, the following abreviations have been used: SOURCE - the 
source of variation; DF - degrees of freedom; SS - sum of squares; MS - 

mean square (SSIDF); F -- the F statistic; PROB - the probability of ob- 
serving an F as large as, or larger than, the one obtained by chance alone; R- 

TABLE 1 

Analysis of variance for specific conductance 

Source DF ss MS F PROB 

Model 9 6144329.49 682703.27 122.66 < 0.0001 
Error 158 879394.16 5565.78 
Total 167 7023723.66 R-square = 0.875 

Time 5 605746.06 121149.21 21.77 <0.0001 
Lot 1 218904.41 218904.41 0.12 0.7486 
Well( Lot) 3 5319679.03 1773226.34 318.59 < 0.0001 
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square - the proportion of variance accounted for by the model; Model - 
the general linear model used in the analysis (in this case specific conduc- 
tance = f(Time, Lot, Well(Loc)); Time -the quarter in which the data were 
taken; Lot - location of the well from which the data were taken (up- 
gradient of down-gradient); Well(Loc) - well within location. 

Well(Loc) plays an important role in the analysis. In order to say that 
there is a real difference between up-gradient and down-gradient, there 
should be more difference between the up-gradient and down-gradient Xs 
than can be explained on the basis of variation among the up-gradient wells 
or the downgradient wells. Well(Loc) provides a pooled estimate of the vari- 
ation among Xs of wells in the same location. The ultimate statistical test in 
the procedure being described is to devide the mean square for Lot by the 
mean square for Well(Loc). When there is no real difference in the analytic 
data between locations that ratio should be about unity. Ratios sufficiently 
larger than unity lead to the conclusion that there is a real (non-random) 
difference in the parameter of interest between up-gradient and down-gradi- 
ent wells. 

The data set consisted of 168 observations as shown in Table 2. These 
168 observations produced 167 degrees of freedom for the Total SS in Table 
1. The six quarters provided in the five DF for Time. Between the two loca- 
tions, “up” and “down”, there is one DF. The two up-gradient wells (UP-l, 
UP-2) accounted for one DF while the three down-gradient wells have two 
DF, comprising the three DF for Well(Loc). The remaining 158 DF for Error 
arise mainly from laboratory error. 

TABLE 2 

Design matrix showing number of observations made for each well at each time period 

Quarter Well 

Up-l up-2 DN-1 DN-2 DN-3 

4 - - 4 4 
4 - 4 4 4 
4 4 4 4 4 
4 4 4 4 4 
4 4 4 4 4 

16 16 16 16 16 

The F-test for the model (model MS/error MS) of 122.66 illustrates that 
not all of the observed differences can be attributed to chance (random sam- 
pling error). Examination of the components of the model reveals the source 
of the differences. The very small F for Lot (Lot MS/Well(Loc) MS) of 0.12 
indicates that up-gradient wells do not differ from down-gradient wells. The 
F for Well(Loc) (Well(Loc) MS/Error MS) of 318.59 cannot be meaningly 
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interpreted because the Error MS used as the denominator of this test repres- 
ents only laboratory error. The same problem occurs in the interpretation 
of the F-test for Time. However, those problems are of no consequence be- 
cause the purpose of the monitoring program is to determine whether the 
down-gradient wells show any evidence of contamination. The F-test for Lot 
fulfills that function. 

The value of R-square, 0.875, which shows that the model used was suit- 
able for the data, was calculated by Model B/Total SS and is thus the pro- 
portion of the total variation accounted for by the model. Of the remaining 
12.5% of the variation about one percent is attributable to laboratory error. 

Table 3 is an example of an analysis of four quarters of data from a waste 
disposal site with one up-gradient and six down-gradient wells. Groundwater 
from each well had four replicate measures in each of the four quarters for a 
total of 112 observations of pH. The analysis follows the same plan as the 
example above. 

Locations (up-gradient vs. down-gradient) clearly do not differ. The large 
R-square shows that the model is excellent for these data. It may be instruc- 
tive to examine Table 4 which presents the means of Time and Lot. 

TABLE 3 

Analysis of covariance for the variable pH 

Source DF ss MS F PROB 

Model 9 34.77 3.86 116.9 <0.0001 
Error 102 3.37 0.03 
Total 111 38.14 R-square = 0.91 

Time 3 21.79 7.26 219.8 <0.0001 
Lot 1 1.42 1.42 0.6 0.4689 
Well( Lot) 5 11.56 2.31 69.9 < 0.0001 

TABLE 4 

Means for the analysis of covariance shown in Table 3 

Time Mean 

1 5.16 
2 4.08 
3 4.45 
4 4.08 

Lot Mean 

UP 
Down 

4.49 
4.17 
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These means show how large the temporal variation is when compared to 
the variation between locations. 

Appendix 1 contains the SAS program statements used to perform the 
analysis shown in Table 1. Readers wishing a formal treatment of the anal- 
ysis of covariance may consult Ott (Ref. [2], Chap. 17). 

The analysis of covariance, although far superior to the t-test for analysis 
of groundwater monitoring data, must be used with a certain degree of cau- 
tion. It shares with the t-test the requirement that several assumptions be 
met. The necessity for random sampling has already been discussed. Like 
other parametric statistical tests, both the analysis of covariance and the t- 
test require that errors (residuals) be normally distributed and that the pop- 
ulation variances be homogeneous. Some data sets may meet neither of these 
assumptions. Another problem arises when the data contain many “less 
than” values because such censored data sets will violate the assumptions 
common to most parametric statistical procedures. A possible solution in- 
volves the use of specially designed non-parametric statistical tests. At pres- 
ent there are no widely available non-parametric procedures that can be sub- 
stituted for the analysis of covariance in the analysis of groundwater data. 
Development and distribution of such tests should have a high priority. 

It is doubtful whether the statistical procedures currently specified could, 
or should, be used in enforcement of environmental protection standards. 
The most recent guidelines for groundwater monitoring do nothing to im- 
prove the unsatisfactory situation with regard to statistical analysis of mon- 
itoring data [3]. Appendix B of that document specifies the use of the 
Fisher-Behrens t-test in a way that incorporates nearly every error discussed 
above. The present author believes that t-tests used as the basis of legal ac- 
tions cannot withstand attacks on their scientific validity. The resulting vac- 
uum in enforcement must be promptly filled. Legislation or regulations 
should specify statistical performance standards rather than particular statis- 
tical procedures. It would then be possible to optimize statistical procedures 
by assessing individual site characteristics while at the same time insuring 
that industry and the public recieve a satisfactory degree of protection. 
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Appendix 1 

The data in Table 1 were entered as shown below: 

DUG1 1 SC 1580 1580 1560 1560 
DUG1 2 SC 1780 1760 1790 1800 

The SAS programming statements were as follows: 

Data One; (Creates a data set called “one’y.) 
Infile Sher; (Reads a file called “Sher” which looks like the data above.) 
Input Depth $ 1 Lot $ 2 Well-Num 4 (Reads the data from “Sher” into 
@ 1 Well $ Time Chem $ X1-X4; “one” according to the specification in 

the input statement.) 
Drop X1--X4; (Xl-X4 will not be retained in the data set.) 
Con = Xl; Output; (These statements create separate 
Con = X2; Output; observations for each of the four 
Con = X3; Output; replicate values.) 
Con = X4; Output; 
Cards; (Signals the end of the input portion of the program.) 
Proc Sort; By Chem; (Sorts the data by parameter, pH, TOC, etc.) 
Proc GLM; By Chem; Classes Well Time Lot; (These three statements 
Model Con = Time Lot Well(Loc); cause the analysis of covariance to 
Test H = Lot E = Well(Loc)/Htype = 1 Etype = 1; be conducted.) 
Title Analysis of Covariance of Groundwater Data; (Self-explanatory. ) 


